The task of reconstructing 3D human motion has wideranging applications. The gold standard Motion capture (MoCap) systems are accurate but inaccessible to the general public due to their cost, hardware and space constraints. In contrast, monocular human mesh recovery (HMR) methods are much more accessible than MoCap as they take single-view videos as inputs. Replacing the multi-view Mo- Cap systems with a monocular HMR method would break the current barriers to collecting accurate 3D motion thus making exciting applications like motion analysis and motiondriven animation accessible to the general public. However, performance of existing HMR methods degrade when the video contains challenging and dynamic motion that is not in existing MoCap datasets used for training. This reduces its appeal as dynamic motion is frequently the target in 3D motion recovery in the aforementioned applications. Our study aims to bridge the gap between monocular HMR and multi-view MoCap systems by leveraging information shared across multiple video instances of the same action. We introduce the Neural Motion (NeMo) field. It is optimized to represent the underlying 3D motions across a set of videos of the same action. Empirically, we show that NeMo can recover 3D motion in sports using videos from the Penn Action dataset, where NeMo outperforms existing HMR methods in terms of 2D keypoint detection. To further validate NeMo using 3D metrics, we collected a small MoCap dataset mimicking actions in Penn Action,and show that NeMo achieves better 3D reconstruction compared to various baselines.
translated by 谷歌翻译
尽管公平感知的机器学习算法一直在受到越来越多的关注,但重点一直放在集中式的机器学习上,而分散的方法却没有被解散。联合学习是机器学习的一种分散形式,客户使用服务器训练本地模型,以汇总它们以获得共享的全局模型。客户之间的数据异质性是联邦学习的共同特征,这可能会诱导或加剧对由种族或性别等敏感属性定义的无私人群体的歧视。在这项工作中,我们提出了公平命运:一种新颖的公平联合学习算法,旨在实现群体公平,同时通过公平意识的聚合方法维持高效用,该方法通过考虑客户的公平性来计算全球模型。为此,通过使用动量术语来估算公平模型更新来计算全局模型更新,该术语有助于克服嘈杂的非直接梯度的振荡。据我们所知,这是机器学习中的第一种方法,旨在使用公平的动力估算来实现公平性。四个现实世界数据集的实验结果表明,在不同级别的数据异质性下,公平命运显着优于最先进的联邦学习算法。
translated by 谷歌翻译
这项工作总结了2022年2022年国际生物识别联合会议(IJCB 2022)的IJCB被遮挡的面部识别竞赛(IJCB-OCFR-2022)。OCFR-2022从学术界吸引了总共3支参与的团队。最终,提交了六个有效的意见书,然后由组织者评估。在严重的面部阻塞面前,举行了竞争是为了应对面部识别的挑战。参与者可以自由使用任何培训数据,并且通过使用众所周知的数据集构成面部图像的部分来构建测试数据。提交的解决方案提出了创新,并以所考虑的基线表现出色。这项竞争的主要输出是具有挑战性,现实,多样化且公开可用的遮挡面部识别基准,并具有明确的评估协议。
translated by 谷歌翻译
巴西最高法院每学期收到数万案件。法院员工花费数千个小时来执行这些案件的初步分析和分类 - 这需要努力从案件管理工作流的后部,更复杂的阶段进行努力。在本文中,我们探讨了来自巴西最高法院的文件多模式分类。我们在6,510起诉讼(339,478页)的新型多模式数据集上训练和评估我们的方法,并用手动注释将每个页面分配给六个类之一。每个诉讼都是页面的有序序列,它们既可以作为图像存储,又是通过光学特征识别提取的相应文本。我们首先训练两个单峰分类器:图像上对Imagenet进行了预先训练的重新编织,并且图像上进行了微调,并且具有多个内核尺寸过滤器的卷积网络在文档文本上从SCRATCH进行了训练。我们将它们用作视觉和文本特征的提取器,然后通过我们提出的融合模块组合。我们的融合模块可以通过使用学习的嵌入来处理缺失的文本或视觉输入,以获取缺少数据。此外,我们尝试使用双向长期记忆(BILSTM)网络和线性链条件随机字段进行实验,以模拟页面的顺序性质。多模式方法的表现都优于文本分类器和视觉分类器,尤其是在利用页面的顺序性质时。
translated by 谷歌翻译
新闻和社交网络的事件分析对于广泛的社会研究和现实世界应用非常有用。最近,已经探索了事件图形的事件图形和它们的复杂关系,其中事件是连接到表示位置的其他顶点的顶点,人们的名称,日期和各种其他事件元数据。图表表示学习方法是有希望从事件图中提取潜在特征,以实现不同的分类算法。但是,现有方法无法满足事件图表的基本要求,例如(i)处理半监控图形嵌入以利用一些标记的事件,(ii)自动确定事件顶点和它们元数据顶点之间关系的重要性以及处理图形异质性的(iii)。本文介绍了GNEE(GAT神经事件嵌入品),这是一种与图形关注网络和图形正规化的方法。首先,提出了事件图规范化以确保所有图形顶点接收事件特征,从而减轻图形异质性缺点。其次,利用自我关注机制嵌入的半监控图形认为现有标记事件,并在表示学习过程期间了解事件图中关系中的关系。具有五个真实世界事件图和六个图形嵌入方法的实验结果的统计分析表明,我们的GNEE优于最先进的半监督图形嵌入方法。
translated by 谷歌翻译
我们提出了三种迭代方法,用于求解MOSER-VESELOV方程,其在控制通用刚体运动的欧拉 - 轴差动方程的离散化中产生。我们首先将问题作为具有正交约束的优化问题,并证明目标函数是凸的。然后,利用来自Riemannian歧管的优化的技术,设计了三种可行的算法。第一个使用BREGMAN方法分割正交约束,而另外两种方法是陡峭的血液的类型。第二种方法使用Cayley-Transform来保留约束和Barzilai-Borwein步长,而第三个方法涉及测地仪,通过ARMIJO规则计算的台阶尺寸。最后,进行了一组数值实验以比较所提出的算法的性能,表明第一算法在准确性和迭代次数方面具有最佳性能。这些迭代方法的基本优势是它们即使在文献中可用的直接方法的适用性的情况下也是如此。
translated by 谷歌翻译
In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale of billions. However, some new cybersecurity issues have appeared together with this development. Some of these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning techniques due to the advances in this field and the increase in processing capabilities. In contrast, attackers do not stay stalled and have developed adversarial attacks focused on context modification and ML/DL evaluation evasion applied to IoT device identification solutions. This work explores the performance of hardware behavior-based individual device identification, how it is affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for individual device identification. Then, previous techniques have been compared with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the identification. However, some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training and model distillation defense techniques are selected to improve the model resilience to evasion attacks, without degrading its performance.
translated by 谷歌翻译
Cybercriminals are moving towards zero-day attacks affecting resource-constrained devices such as single-board computers (SBC). Assuming that perfect security is unrealistic, Moving Target Defense (MTD) is a promising approach to mitigate attacks by dynamically altering target attack surfaces. Still, selecting suitable MTD techniques for zero-day attacks is an open challenge. Reinforcement Learning (RL) could be an effective approach to optimize the MTD selection through trial and error, but the literature fails when i) evaluating the performance of RL and MTD solutions in real-world scenarios, ii) studying whether behavioral fingerprinting is suitable for representing SBC's states, and iii) calculating the consumption of resources in SBC. To improve these limitations, the work at hand proposes an online RL-based framework to learn the correct MTD mechanisms mitigating heterogeneous zero-day attacks in SBC. The framework considers behavioral fingerprinting to represent SBCs' states and RL to learn MTD techniques that mitigate each malicious state. It has been deployed on a real IoT crowdsensing scenario with a Raspberry Pi acting as a spectrum sensor. More in detail, the Raspberry Pi has been infected with different samples of command and control malware, rootkits, and ransomware to later select between four existing MTD techniques. A set of experiments demonstrated the suitability of the framework to learn proper MTD techniques mitigating all attacks (except a harmfulness rootkit) while consuming <1 MB of storage and utilizing <55% CPU and <80% RAM.
translated by 谷歌翻译
Stress has a great effect on people's lives that can not be understated. While it can be good, since it helps humans to adapt to new and different situations, it can also be harmful when not dealt with properly, leading to chronic stress. The objective of this paper is developing a stress monitoring solution, that can be used in real life, while being able to tackle this challenge in a positive way. The SMILE data set was provided to team Anxolotl, and all it was needed was to develop a robust model. We developed a supervised learning model for classification in Python, presenting the final result of 64.1% in accuracy and a f1-score of 54.96%. The resulting solution stood the robustness test, presenting low variation between runs, which was a major point for it's possible integration in the Anxolotl app in the future.
translated by 谷歌翻译
The field of Automatic Music Generation has seen significant progress thanks to the advent of Deep Learning. However, most of these results have been produced by unconditional models, which lack the ability to interact with their users, not allowing them to guide the generative process in meaningful and practical ways. Moreover, synthesizing music that remains coherent across longer timescales while still capturing the local aspects that make it sound ``realistic'' or ``human-like'' is still challenging. This is due to the large computational requirements needed to work with long sequences of data, and also to limitations imposed by the training schemes that are often employed. In this paper, we propose a generative model of symbolic music conditioned by data retrieved from human sentiment. The model is a Transformer-GAN trained with labels that correspond to different configurations of the valence and arousal dimensions that quantitatively represent human affective states. We try to tackle both of the problems above by employing an efficient linear version of Attention and using a Discriminator both as a tool to improve the overall quality of the generated music and its ability to follow the conditioning signals.
translated by 谷歌翻译